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ABSTRACT 

Urysohn integral equations appear in many applications, for example it occurs 

in solving problems arising in economics, engineering and physics. Equations 

of this type have been used to model many thermostatic devices. In this paper 

the Galerkin and the Petrov-Galerkin methods have been used to solve the 

nonlinear integral equation of the Urysohn type. Alpert (1993) constructed a 

class of wavele bases and applied it to approximate solutions of the Fredholm 

second kind integral equations by the Galerkin method. We use Alpert 

multiwavelet bases with orthonormal Legendre polynomials to approximate 

the solution of nonlinear integral equation of the Urysohn type. The numerical 

examples show the good accuracy of the method . 

 

Keywords: Urysohn integral equation, Fredholm, Petrov-Galerkin method, 

Galerkin method, Multiwavelet bases. 

 

1. INTRODUCTION 

 In this paper, we study the nonlinear Urysohn integral equation:  

 

𝑥(𝑡) = ∫ ‍
1

0
𝑘(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠 + 𝑓(𝑡),‍‍‍‍‍‍0 ≤ 𝑡 ≤ 1‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍                 (1)  (1) 

 

for known functions 𝑘 and 𝑓, an unknown solution 𝑥 is to be approximated. 

 

Equation (1) was discussed by Urysohn (1924). Equations of this type appear 

in many applications, for example it occurs in solving problems arising in 

economics, engineering and physics (Zabreiko et al (1975)). Also equations 
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of this type have been used to model many thermostatic devices; see Glashoff 

and Sprekels (1981) and Glashoff and Sprekels (1981). Several authors have 

considered the problem of establishing the existence of solutions for (1) using 

different techniques. For example see (El-Sayed et al. 2003) and O’Regan 

(1998). In Atkinson and Rotra (1987), equation (1) is considered in a 

nonlinear operator equation   

 

𝑥 = 𝒦(𝑥)                                             (2) 

 

with 𝒦 a completely continuous mapping of a domain in the Banach space 𝑋 

into 𝑋. 

 

Let 𝑋𝑛,‍‍‍‍𝑛 ≥ 1 denote a sequence of finite dimensional 

approximating subspaces and let 𝑃𝑛 be a projection of 𝑋 onto 𝑋𝑛. The 

projection method for solving 𝑥 = 𝒦(𝑥) consists of solving 𝑥𝑛 = 𝑃𝑛𝒦(𝑥𝑛). 
 

 This method was analyzed by (Krasnoselskii et al. 1972)  and the 

rate of convergence of {𝑥𝑛} to the exact solution were obtained. Detailed 

convergence results for both Galerkin and collocation projection methods for 

nonlinear case have been studied extensively in Atkinson and Rotra (1987). 

 

2. MULTIWAVELET BASES 

We provide below a brief review of Alpert's wavelets (see Alpert 

(1993)). The wavelet bases for 𝐿2[0,1] is comprised of dilates and translates 

of a set of functions ℎ1, ℎ2, … , ℎ𝑛. In particular, for 𝑘 a positive integer, and 

for 𝑚 = 0,1,…, we define a space 𝑆𝑚
𝑘  of piecewise polynomial functions:  

 

Sm
k ‍‍‍‍= ‍‍‍‍ {f: there‍striction‍off‍to‍the‍interval‍‍‍‍(2-mn, 2-m(n + 1))‍is‍a
‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍polynomial‍of‍degree‍less‍than‍k, for‍‍‍‍‍‍‍‍‍

  

n = 0,… , 2m − 1‍and‍f‍vanish‍elsewhere}.                                       
(3)   

 

Note that  

dim𝑆𝑚
𝑘 = 2𝑚𝑘, 

and 

𝑆0
𝑘 ⊂ 𝑆1

𝑘 ⊂ ⋯ ⊂ 𝑆𝑚
𝑘 ⊂ ⋯. 

 

The orthogonal complement of 𝑆𝑚
𝑘  in 𝑆𝑚+1

𝑘  is denoted by 𝑅𝑚
𝑘  so that 

dim𝑅𝑚
𝑘 = 2𝑚𝑘 and  
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𝑆𝑚
𝑘 ⊕𝑅𝑚

𝑘 = 𝑆𝑚+1
𝑘 ,‍‍‍‍‍‍‍‍𝑅𝑚

𝑘 ⊥ 𝑆𝑚
𝑘  

 

Also note that  

 

𝑆𝑚
𝑘 = 𝑆0

𝑘⊕𝑅0
𝑘⊕𝑅1

𝑘⊕⋯⊕𝑅𝑚−1
𝑘 ‍‍‍‍‍‍‍                            (4) 

 

The set of functions ℎ1, ℎ2, … , ℎ𝑘 mentioned above is taken as an 

orthonormal bases for 𝑅0
𝑘. Since 𝑅0

𝑘 is orthogonal to 𝑆0
𝑘, the first 𝑘 moments 

of ℎ1, ℎ2, … , ℎ𝑘 vanish,  

 

∫ ‍
1

0
ℎ𝑗(𝑥)𝑥

𝑖𝑑𝑥 = 0,‍‍‍‍‍‍‍‍‍‍𝑖 = 0,1, … , 𝑘 − 1                             (5) 

 

The wavelet bases of Alpert is constructed by defining orthogonal systems  

 

ℎ𝑗,𝑚
𝑛 (𝑠) = 2

𝑚

2 ℎ𝑗(2
𝑚𝑠 − 𝑛),‍‍‍‍𝑗 = 1.… , 𝑘,‍‍‍‍‍‍‍‍𝑚, 𝑛 ∈ ℤ.‍‍‍‍‍‍‍‍‍‍‍          (6)  

 

We refer the reader to Alpert (1993) for detailed constructions of 

ℎ1, ℎ2, … , ℎ𝑘. The function ℎ𝑗,𝑚
𝑛  generated in (6) becomes an orthonormal 

bases for 𝑅𝑚
𝑘 .  

 

𝑅𝑚
𝑘 = linear‍span‍{ℎ𝑗,𝑚

𝑛 ; ‍‍‍‍‍‍𝑗 = 1,… , 𝑘,‍‍‍‍‍‍𝑛 = 0,… , 2𝑚 − 1}. 

 

If {𝑢1, 𝑢2, … , 𝑢𝑘} denote an orthonormal bases for 𝑅0
𝑘, then the orthonormal 

system  

 

𝐵𝑘 = {𝑢𝑗, 𝑗 = 1,… , 𝑘} ∪ {ℎ𝑗,𝑚
𝑛 ; ‍‍‍‍𝑗 = 1,… , 𝑘; ‍𝑚 = 0,… ; 𝑛 = 0,… , 2𝑚 − 1}, 

 

becomes the multiwavelet bases of order 𝑘 for 𝐿2[0,1]. In practice we take an 

arbitrarily large but a fixed value for 𝑚 and use  

 

𝐵̃𝑘 = {𝑢𝑗,‍‍‍‍‍‍𝑗 = 1,… , 𝑘} ∪ {ℎ𝑗,𝑚
𝑛 ,‍‍‍‍‍‍𝑗 = 1,… , 𝑘,‍‍‍‍‍‍         

 

𝑛 = 0,1,… , 2𝑚 − 1} = {𝑏𝑗}𝑗=1
𝑘(2𝑚+1)

                                          (7) 

 

for an orthonormal bases for 𝑆𝑚
𝑘 . For example the 𝑆1

4 space has the basis 

elements as the following form:  
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𝑏1 = 1

𝑏2 = √3(2𝑡 − 1)

𝑏3 = √5(6𝑡
2 − 6𝑡 + 1)

𝑏4 = √7(20𝑡
3 − 30𝑡2 + 12𝑡 − 1)

𝑏5 =

{
 
 

 
 √

15

17
(3 − 56𝑡 + 216𝑡2 − 224𝑡3), 0 ≤ 𝑡 ≤

1

2
;

√
15

17
(−61 + 296𝑡 − 456𝑡2 + 224𝑡3),

1

2
< 𝑡 ≤ 1.

𝑏6 =

{
 
 

 
 √

1

21
(−11 + 270𝑡 − 1320𝑡2 + 1680𝑡3), 0 ≤ 𝑡 ≤

1

2
;

√
1

21
(−619 + 2670𝑡 − 3720𝑡2 + 1680𝑡3),

1

2
< 𝑡 ≤ 1.

𝑏7 =

{
 
 

 
 √

35

68
(2 − 60𝑡 + 348𝑡2 − 512𝑡3), 0 ≤ 𝑡 ≤

1

2
;

√
35

68
(−222 + 900𝑡 − 1188𝑡2 + 512𝑡3),

1

2
< 𝑡 ≤ 1.

𝑏8 =

{
 
 

 
 √

5

84
(−2 + 72𝑡 − 492𝑡2 + 840𝑡3), 0 ≤ 𝑡 ≤

1

2
;

√
5

84
(−418 + 1608𝑡 − 2028𝑡2 + 840𝑡3),

1

2
< 𝑡 ≤ 1.

 

The approximating power of the wavelets is given as follows (see Alpert 

(1993)).   

 

Lemma 1. 1Let 𝑄𝑚
𝑘  be the orthogonal projection of 𝐿2[0,1] onto 𝑆𝑚

𝑘 . If 

𝑓 ∈ 𝐶𝑘[0,1], then  

 

‖𝑄𝑚
𝑘 𝑓−𝑓‖ ≤ 2−𝑚𝑘

2

4𝑘𝑘!
sup
𝑥∈[0,1]

|𝑓(𝑘)(𝑥)|. 

 

 

2. THE GALERKIN METHOD 
 

Consider the following Urysohn integral equation:  
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𝑥(𝑡) = ∫ ‍
1

0
𝑘(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠 + 𝑓(𝑡),‍‍‍‍0 ≤ 𝑡 ≤ 1‍‍‍‍‍‍‍               (8) 

 

where 𝑘 and 𝑓 are known functions and 𝑥 is the unknown function to be 

approximated. 

 

Here we use the Galerkin method with multiwavelet bases to give 

numerical solutions of Urysohn integral equation. 

 

Let 𝑋 = 𝐿2[0,1]. Alpert (1993) proved that 𝐿2[0,1] = ⋃ ‍∞
𝑚=0 𝑆𝑚

𝑘 , so we 

choose  

 

𝑋𝑛 = 𝑆𝑚
𝑘 ,‍‍‍‍‍‍‍‍𝑚, 𝑘 ∈ ℤ,‍‍‍‍‍‍𝑚 ≥ 0,‍‍‍‍‍‍𝑘 ≥ 2. 

 

Now we define the orthogonal projection operator as the following form: 

 
𝑃𝑛: 𝑋 → 𝑋𝑛
𝑃𝑛(𝑥(𝑡)) = 𝑥𝑛(𝑡)

 

 so  

 

𝑥𝑛(𝑡) = ∑ ‍𝑛
𝑖=1 𝑐𝑖𝑏𝑖(𝑡)                                      (9) 

  

where {𝑏𝑖(𝑡)}𝑖=1
𝑛  are orthonormal bases elements of 𝑆𝑚

𝑘  and 𝑛 = 2𝑚𝑘. 

 

In order to solve equation (8) we write it in operator form:  

 

𝑥 = 𝒦(𝑥) + 𝑓                                            (10) 

 

where 𝒦 is a completely continuous operator defined on 𝑋 as follows:  

 

𝒦(𝑥) = ∫ ‍
1

0

𝑘(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠,‍‍‍‍‍‍‍‍0 ≤ 𝑡 ≤ 1,‍‍‍‍‍‍𝑥 ∈ ℝ. 

 

In order to obtain the approximate solution 𝑥𝑛(𝑡), it needs to satisfy equation 

(10):  

 
𝑥𝑛 = 𝒦(𝑥𝑛) + 𝑓

𝑥𝑛 = ∫ ‍
1

0
𝑘(𝑡, 𝑠, 𝑥𝑛(𝑠))𝑑𝑠 + 𝑓(𝑡)

                               (11) 
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 The expansion of 𝑘 in this bases is given by the formula  

 

𝑘(𝑡, 𝑠, 𝑥𝑛(𝑠)) = ∑ ‍𝑛
𝑖,𝑗=1 𝑘𝑖𝑗𝑏𝑖(𝑠)𝑏𝑗(𝑡)‍‍‍                                (12) 

 

where the coefficients 𝑘𝑖𝑗 are given by the expansion  

 

𝑘𝑖𝑗 = ∫ ‍
1

0

∫ ‍
1

0

𝑘(𝑡, 𝑠, 𝑥𝑛(𝑠))𝑏𝑖(𝑠)𝑏𝑗(𝑡)𝑑𝑠𝑑𝑡. 

 

Using (12) and (9), integral equation (11) is thereby approximated by the 

equation:  

 

∑‍

𝑛

𝑖=1

𝑐𝑖𝑏𝑖(𝑡) − ∫ ‍
1

0

∑‍

𝑛

𝑖=1

∑‍

𝑛

𝑗=1

𝑘𝑖𝑗𝑏𝑖(𝑠)𝑏𝑗(𝑡)𝑑𝑠 = 𝑓(𝑡),‍‍‍‍‍‍‍‍0 ≤ 𝑡 ≤ 1 

 

multiplying both sides of the above equations with bases elements {𝑏𝑗(𝑡)} 

and then integrating from 0 to 1 with respect to 𝑡 and using the 

orthonormality of the bases {𝑏𝑗(𝑡)}, we have:  

 

𝑐𝑗 − ∑ ‍𝑛
𝑖=1 𝑘𝑖𝑗 (∫ ‍

1

0
𝑏𝑖(𝑠)𝑑𝑠) = 𝑓𝑗,‍‍‍‍‍‍‍‍𝑗 = 1,… , 𝑛‍‍‍‍‍‍‍‍ (13) 

 

where  

𝑓𝑗 = ∫ ‍
1

0

𝑓(𝑡)𝑏𝑗(𝑡)𝑑𝑡,‍‍‍‍‍‍‍‍𝑗 = 1,… , 𝑛 

 

Now we have 𝑛 equations with 𝑛 unknowns which can be solved easily.  

 

4. THE PETROV-GALERKIN METHOD 

We begin this section with a brief review of the Petrov-Galerkin 

method. We follow closely the paper by Chen and Xu (1998). Let 𝑋 be a 

Banach space and 𝑋∗ its dual space of continuous linear functionals. For each 

positive integer 𝑛, we assume that 𝑋𝑛 ⊂ 𝑋, 𝑌𝑛 ⊂ 𝑋
∗, and 𝑋𝑛 and 𝑌𝑛 are finite 

dimensional vector spaces with  
 

dim𝑋𝑛 = dim𝑌𝑛. 
 

We further assume the following approximation property. 
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(H) If 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, then there are sequences {𝑥𝑛}, {𝑦𝑛} with 𝑥𝑛 ∈ 𝑋𝑛, 

𝑦𝑛 ∈ 𝑌𝑛 for all 𝑛 such that 𝑥𝑛 → 𝑥, and 𝑦𝑛 → 𝑦. 

 

Define, for 𝑥 ∈ 𝑋, an element 𝑃𝑛𝑥 ∈ 𝑋𝑛 called the generalized best 

approximation from 𝑋𝑛 to 𝑥 with respect to 𝑌𝑛 by the equation  

 

〈𝑥 − 𝑃𝑛𝑥, 𝑦𝑛〉 = 0,‍‍‍‍∀𝑦𝑛 ∈ 𝑌𝑛.      (14) 

  

It is proved by Chen and Xu (1998), that for each 𝑥 ∈ 𝑋, the generalized best 

approximation from 𝑋𝑛 to 𝑥 with respect to 𝑌𝑛 exists uniquely if and only if  

 

𝑌𝑛 ∩ 𝑋𝑛
⊥ = {0}                                            (15)        

 

where 𝑋𝑛
⊥ = {𝑥∗ ∈ 𝑋∗:‍‍‍‍〈𝑥, 𝑥∗〉 = 0‍‍‍‍forall‍‍‍‍𝑥 ∈ 𝑋𝑛}. When condition (15) 

is satisfied, 𝑃𝑛 defines a projection; 𝑃𝑛
2 = 𝑃𝑛. Throughout the remainder of 

this paper, condition (15) is assumed. 

 

In order to formulate the Petrov-Galerkin method as part of the general 

projection scheme and render an appropriate error analysis accordingly, it is 

important to establish that 𝑃𝑛 converges pointwise to the identity operator 𝐼. 
To this end, the notion of regular pair is introduced. Assume that for each n, 

there is a linear operator Π𝑛: 𝑋𝑛 → 𝑌𝑛 with Π𝑛𝑋𝑛 = 𝑌𝑛 and satisfying the 

following two conditions.  

 

(𝐻 − 1)‍‍‍‍‖𝑥𝑛‖ ≤ 𝐶1〈𝑥𝑛, Π𝑛𝑥𝑛〉
1

2‍‍‍‍forall‍‍‍‍𝑥𝑛 ∈ 𝑋𝑛.

(𝐻 − 2)‖Π𝑛𝑥𝑛‖ ≤ 𝐶2‖𝑥𝑛‖‍‍‍‍forall‍‍‍‍𝑥𝑛 ∈ 𝑋𝑛.
 

 

Here 𝐶1 and 𝐶2 are constants independent of n. 

 

If a pair of space sequences {𝑋𝑛} and {𝑌𝑛} satisfy (H-1) and (H-2), we call 

{𝑋𝑛, 𝑌𝑛} a regular pair. It is shown by Chen and Xu (1998), that, if a regular 

pair {𝑋𝑛, 𝑌𝑛} satisfies dim𝑋𝑛 = dim𝑌𝑛 and condition (H), then the 

corresponding generalized projection 𝑃𝑛 satisfies:  

 

 

(𝑃1)‍‍‍‖𝑃𝑛𝑥−𝑥‖ → 0‍‍‍‍as‍‍‍‍𝑛 → 0‍‍‍‍for‍all‍‍‍‍𝑥 ∈ 𝑋,
(𝑃2)‍‍‍‖𝑃𝑛‖ ≤ 𝐶,‍‍‍‍𝑛 = 1,2,… ,‍‍‍‍for‍some‍constant‍‍‍‍𝐶,‍‍‍‍and
(𝑃3)‍‍‍‖𝑃𝑛𝑥−𝑥‖ ≤ 𝑐‖𝑄𝑛𝑥−𝑥‖,‍‍‍‍𝑛 = 1,2,… ,‍‍‍‍for‍some‍constant‍‍‍‍𝑐,

 

 

where 𝑄𝑛𝑥 is the best approximation from 𝑋𝑛 to 𝑥. 
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5. ESTABLISHMENT OF THE PETROV- GALERKIN 

CONDITIONS 

In this section we show that all necessary conditions shown in 

previous section hold with Alpert Multiwavelet basis. At first we should 

choose the appropriate spaces for 𝑋 and 𝑋∗. Let put 𝑋 = 𝐿2[0,1], so the dual 

space will be the same: 𝑋∗ = 𝐿2[0,1]. (The dual of 𝐿𝑝 space is 𝐿𝑞 where 
1

𝑝
+
1

𝑞
= 1). 

 

We saw in section 2 that 𝑋 = 𝐿2[0,1] = ⋃ ‍∞
𝑚=0 𝑆𝑚

𝑘 , which 𝑆𝑚
𝑘 ,‍‍‍‍𝑚 = 0,1, … 

are the spaces constructed from Alpert Multiwavelets. Now we introduce the 

space sequences 𝑋𝑛 and 𝑌𝑛:  

 

𝑋𝑛 ‍‍‍‍= ‍‍‍‍ 𝑆𝑚
𝑘 ⊆ ⋃ ‍

∞

𝑚=0

𝑆𝑚
𝑘 = 𝐿2[0,1] = 𝑋

𝑌𝑛 ‍‍‍‍= ‍‍‍‍ 𝑆𝑚′
𝑘 ′ ⊆ ⋃ ‍

∞

𝑚′=0

𝑆𝑚′
𝑘′ = 𝐿2[0,1] = 𝑋∗

 

 

In order to satisfy in condition 𝑑𝑖𝑚𝑋𝑛 = 𝑑𝑖𝑚𝑌𝑛 < ∞ we should have 

2𝑚𝑘 = 2𝑚′𝑘′ < ∞ and this equation implies that 2𝑚−𝑚′ =
𝑘

𝑘′
. 

In this article, we consider 𝑚′ = 𝑚 + 1 and 𝑘′ =
𝑘

2
. 

 

Condition (H):  

‍‍‍‍∀𝑥𝑛(𝑡) ∈ 𝑋 = 𝐿2[0,1] = ⋃ ‍

∞

𝑚=0

𝑆𝑚
𝑘 ‍‍‍‍‍‍‍‍∃𝑥𝑛(𝑡) ∈ 𝑋𝑛 = 𝑆𝑚

𝑘 ; ‍‍‍‍P𝑥𝑛(𝑡) − 𝑥𝑡P2 → 0,‍‍‍‍𝑎𝑠𝑛 → ∞.

‍‍‍‍∀𝑦𝑛(𝑡) ∈ 𝑋
∗ = 𝐿2[0,1] = ⋃ ‍

∞

𝑚′=0

𝑆𝑚′
𝑘′ ‍‍‍‍‍‍‍‍∃𝑥𝑛(𝑡) ∈ 𝑌𝑛 = 𝑆𝑚′

𝑘′ ; ‍‍‍‍P𝑦𝑛(𝑡) − 𝑦𝑡P2 → 0,‍‍‍‍𝑎𝑠𝑛 → ∞.

 

 

In above equations, ‖‍. ‖2 is defined in the space 𝐿2[0,1]. We introduce 𝑥𝑛(𝑡) 
and 𝑦𝑛(𝑡) as follows. If {𝑏𝑖(𝑡)}𝑖=1

𝑛  be a basis for the space 𝑋𝑛 = 𝑆𝑚
𝑘  and 

{𝑏𝑖
∗(𝑡)}𝑖=1

𝑛  be another one for the space 𝑌𝑛 = 𝑆𝑚′
𝑘′  with the condition 𝑛 =

2𝑚𝑘 = 2𝑚′𝑘′, then we define the projection operator 𝑃𝑛 as the same as we 

did in Galerkin method:  
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𝑃𝑛: 𝑋 = ⋃ ‍

∞

𝑚=0

𝑆𝑚
𝑘 → 𝑋𝑛 = 𝑆𝑚

𝑘

𝑃𝑛(𝑥(𝑡)) = 𝑥𝑛(𝑡) =∑‍

𝑛

𝑖=1

𝑐𝑖𝑏𝑖(𝑡).

 

 

Also we can define the operator 𝑃𝑛′ from 𝑋∗ to 𝑌𝑛 in a same way. Now we 

should define the operator ∏ ‍𝑛  which used in definition of regular pair:  

 

∏‍

𝑛

: 𝑋𝑛 = 𝑆𝑚
𝑘 → 𝑌𝑛 = 𝑆𝑚′

𝑘′

∏‍

𝑛

(𝑥𝑛(𝑡)) =∏‍

𝑛

(∑‍

𝑛

𝑖=1

𝛼𝑖𝑏𝑖(𝑡)) =∑‍

𝑛

𝑖=1

𝛼𝑏𝑖
∗(𝑡).

 

 

Whit this definition ∏ ‍𝑛  is clearly linear and one to one, so with respect to 

that 𝑑𝑖𝑚𝑋𝑛 = 𝑑𝑖𝑚𝑌𝑛 we can conclude that ∏ ‍𝑛 𝑋𝑛 = 𝑌𝑛. 

 

The issue we are concerned with is to show that conditions (H-1) and (H-2) 

are established.  

(H-1): ∀𝑥𝑛(𝑡) ∈ 𝑋𝑛 = 𝑆𝑚
𝑘 ‖𝑥𝑛‖ < 𝑐1〈𝑥𝑛, ∏ ‍𝑛 𝑥𝑛〉

1

2. 

 

Proof. 

〈𝑥𝑛,∏‍

𝑛

𝑥𝑛〉 ‍‍‍= ‍‍‍‍∫ ‍
1

0

𝑥𝑛(𝑡)(∏‍

𝑛

𝑥𝑛(𝑡))𝑑𝑡

‍= ‍‍‍‍ ∑ ‍

2𝑚−1

𝑛=0

∫ ‍

𝑛+1

2𝑚

𝑛

2𝑚

[∑ ‍

2𝑚𝑘

𝑖=1

𝛼𝑖𝑏𝑖(𝑡)] [∑ ‍

2𝑚𝑘

𝑗=1

𝛼𝑗𝑏𝑗
∗(𝑡)] 𝑑𝑡

‍= ‍‍‍‍ ∑ ‍

2𝑚−1

𝑛=0

∑ ‍

2𝑚𝑘

𝑖,𝑗=1

∫ ‍

𝑛+1

2𝑚

𝑛

2𝑚

𝑏𝑖(𝑡)𝑏𝑗
∗(𝑡)𝛼𝑖𝛼𝑗𝑑𝑡

‍= ‍‍‍‍ ∑ ‍

2𝑚𝑘

𝑖,𝑗=1

𝛼𝑖𝛼𝑗∫ ‍
1

0

𝑏𝑖(𝑡)𝑏𝑗
∗(𝑡)𝑑𝑡

 

 

 



Nasser Aghazadeh & Medya Siadat 

 

120 Malaysian Journal of Mathematical Sciences 

 

 Let 𝛼𝑇 = (𝛼1,⋯ , 𝛼𝑛) and 𝐵 = [𝑏𝑖,𝑗]𝑖,𝑗=1
𝑛

= [∫ ‍
1

0
𝑏𝑖(𝑡)𝑏𝑗

∗(𝑡)𝑑𝑡]
𝑖,𝑗=1

2𝑚𝑘, 

then:  

〈𝑥𝑛, ∏ ‍𝑛 𝑥𝑛〉 = 𝛼
𝑇𝐵𝛼                                          (16) 

 

Now we choose spaces 𝑋𝑛 and 𝑌𝑛 in such a way that the condition (H-1) 

holds. If 𝑘 be a positive integer, by putting 𝑋𝑛 = 𝑆0
𝑘 and 𝑌𝑛 = 𝑆1

𝑘

2, the matrix 

𝐵 will be diagonal with positive members. So we have:  

 

〈𝑥𝑛,∏ ‍

𝑛

𝑥𝑛〉 =∑‍

𝑛

𝑖=1

𝛼𝑖
2𝑏𝑖𝑖 ≥ 𝑏𝑞𝑞 = 𝑏𝑞𝑞‖𝑥𝑛‖2

2 

 

 Where  𝑏𝑞𝑞 = min1≤𝑖≤𝑛𝑏𝑖𝑖, so  

 

〈𝑥𝑛,∏‍

𝑛

𝑥𝑛〉 ≥ 𝑏𝑞𝑞‖𝑥𝑛‖ 

and  

‖𝑥𝑛‖ ≤
1

√𝑏𝑞𝑞
〈𝑥𝑛,∏ ‍

𝑛

𝑥𝑛〉
1

2 

 

Considering 𝑐1 =
1

√𝑏𝑞𝑞
, condition (H-1) holds.  

 

(H-2): ∀𝑥𝑛(𝑡) ∈ 𝑋𝑛 = 𝑆𝑚
𝑘 ,‍‍‍‍‖∏ ‍𝑛 𝑥𝑛‖ ≤ 𝑐2‖𝑥𝑛‖ 

 

Proof. 

‖∏‍

𝑛

𝑥𝑛‖

2

2

= ∫ ‍
1

0

(∏‍

𝑛

𝑥𝑛(𝑡))

2

𝑑𝑡 = ∫ ‍
1

0

( ∑ ‍

2𝑚′𝑘′

𝑖=1

𝛼𝑖𝑏𝑖
∗(𝑡))

2

𝑑𝑡 

 

By dividing the interval [0,1] into subintervals [
𝑛

2𝑚
,
𝑛+1

2𝑚
],‍‍‍‍𝑛 = 0,1,… , ‍2𝑚 −

1, we can continue the previous equation like this:  
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‖∏ ‍𝑛 𝑥𝑛‖2
2 =‍‍‍‍∑ ‍2𝑚−1

𝑛=0 ∫ ‍
𝑛+1

2𝑚
𝑛

2𝑚
(∑ ‍2𝑚𝑘

𝑖=1 𝛼𝑖𝑏𝑖
∗(𝑡))

2
𝑑𝑡

‍= ‍‍‍‍∑ ‍2𝑚−1
𝑛=0 ∫ ‍

𝑛+1

2𝑚
𝑛

2𝑚
[∑ ‍2𝑚𝑘

𝑖=1 [𝛼𝑖
2𝑏𝑖

∗2(𝑡) + 2∏ ‍2𝑚𝑘
𝑗=1,𝑗≠𝑖 𝛼𝑖𝛼𝑗𝑏𝑖

∗(𝑡)𝑏𝑗
∗(𝑡)]]𝑑𝑡

‍‍= ‍‍‍‍∑ ‍2𝑚𝑘
𝑖=1 𝛼𝑖

2∑ ‍2𝑚−1
𝑛=0 ∫ ‍

𝑛+1

2𝑚
𝑛

2𝑚
𝑏𝑖
∗2(𝑡)𝑑𝑡 + ∑ ‍2𝑚𝑘

𝑖=1 (∑ ‍2𝑚−1
𝑛=0 ∫ ‍

𝑛+1

2𝑚
𝑛

2𝑚
[2∏ ‍2𝑚𝑘

𝑗=1,𝑗≠𝑖 𝛼𝑖𝛼𝑗𝑏𝑖
∗(𝑡)𝑏𝑗

∗(𝑡)]𝑑𝑡)

= ‍‍‍‍∑ ‍2𝑚𝑘
𝑖=1 𝛼𝑖

2 ∫ ‍
1

0
𝑏𝑖
∗2(𝑡)𝑑𝑡 + ∑ ‍2𝑚𝑘

𝑖=1 (2∏ ‍2𝑚𝑘
𝑗=1,𝑗≠𝑖 𝛼𝑖𝛼𝑗) ∫ ‍

1

0
𝑏𝑖
∗(𝑡)𝑏𝑗

∗(𝑡)𝑑𝑡

 

 

 

Orthonormality of 𝑌𝑛 basis elements implies that the second integral 

vanishes, so:  

 

‖∏ ‍

𝑛

𝑥𝑛‖

2

2

= ∑ ‍

2𝑚𝑘

𝑖=1

𝛼𝑖
2∫ ‍

1

0

𝑏𝑖
∗2(𝑡)𝑑𝑡

‍‍‍‍‍‍‍‍⇒ ‖∏‍

𝑛

𝑥𝑛‖ = ‖𝑥𝑛‖ ≤ 𝑐2‖𝑥𝑛‖

 

 

Now it is sufficient to take 𝑐2 ≥ 1.  

 

6. APPLYING THE METHOD 

The Petrov-Galerkin approximation to the Urysohn integral equation 

(2) is obtained by solving the following equation for 𝑥𝑛 

 

〈𝑥𝑛 −𝒦𝑥𝑛, 𝑏𝑗
∗〉 = 〈𝑓, 𝑏𝑗

∗〉 

 

where {𝑏𝑗
∗(𝑡)} are the bases elements of subspace 𝑌𝑛. Using (9) and the fact 

that 𝒦(𝑥𝑛) ∈ 𝑋𝑛, it follows that  

 

∑ ‍𝑛
𝑖=1 𝑐𝑖𝑏𝑖𝑗 − ∑ ‍𝑛

𝑖=1 𝑐̂𝑖𝑏𝑖𝑗 = 𝑓𝑗                                     (16) 

 

where 𝑏𝑖𝑗 = 〈𝑏𝑖(𝑡), 𝑏𝑗
∗(𝑡)〉 and 𝑓𝑗 = 〈𝑓(𝑡), 𝑏𝑗

∗(𝑡)〉. Note that since 𝒦𝑥𝑛 ∈ 𝑋𝑛, 

so  

𝒦𝑥𝑛 =∑‍

𝑛

𝑖=1

𝑐̂𝑖𝑏𝑖(𝑡), 
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To modify the coefficients 𝑐̂𝑗, by multiplying both sides of the above 

equation by {𝑏𝑗(𝑡)} and integrate over the interval [0,1] with respect to 𝑡, we 

have  

 
𝑐̂𝑗 ‍‍‍‍= ‍‍‍‍ 〈𝒦𝑥𝑛(𝑡), 𝑏𝑗(𝑡)〉

‍= ‍‍‍‍∫ ‍
1

0

∫ ‍
1

0

𝑘 (𝑡, 𝑠,∑ ‍

𝑛

𝑖=1

𝑐𝑖𝑏𝑖(𝑠)) 𝑏𝑗(𝑡)𝑑𝑠𝑑𝑡.
 

 

 By substituting in Eq. (16)  

 

 ∑ ‍𝑛
𝑖=1 𝑐𝑖𝑏𝑖𝑗 − ∑ ‍𝑛

𝑖=1 𝑏𝑖𝑗 [∫ ‍
1

0
∫ ‍
1

0
𝑘(𝑡, 𝑠, ∑ ‍𝑛

𝑖=1 𝑐𝑖𝑏𝑖(𝑠))𝑏𝑖(𝑡)𝑑𝑠𝑑𝑡] = 𝑓𝑗,‍‍‍‍𝑗 = 1,2, … , 𝑛 

 

Let  

𝐾𝑖 = ∫ ‍
1

0

∫ ‍
1

0

𝑘 (𝑡, 𝑠,∑ ‍

𝑛

𝑖=1

𝑐𝑖𝑏𝑖(𝑠)) 𝑏𝑖(𝑡)𝑑𝑠𝑑𝑡, 

so  

∑‍

𝑛

𝑖=1

𝑐𝑖𝑏𝑖𝑗 = 𝑓𝑗 +∑‍

𝑛

𝑖=1

𝐾𝑖𝑏𝑖𝑗,‍‍‍‍𝑗 = 1,… , 𝑛. 

 

The iterated projection method solution is defined by 

 

𝑥̃𝑛 = 𝒦(𝑥𝑛). 
 

7. NUMERICAL EXAMPLES 

In this section we illustrate the method discussed in section 3 with 

some examples. 

 

Example 1. In this example we solve the following equation  

 

𝑥(𝑡) = ∫ ‍
1

0

(𝑒𝑡+𝑠 +
1

2
𝑥(𝑠)) 𝑑𝑠 + 2𝑒𝑡 +

1

2
−
1

2
𝑒 − 𝑒(𝑡+1) 

 

with the exact solution 𝑒𝑡. Numerical results are presented in Table 1. 
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Example 2.  In this example we solve the following equation  

𝑥(𝑡) = ∫ ‍
1

0

sin(𝑡 + 𝑠 + 𝑥(𝑠))𝑑𝑠 + (𝑡 − sin1sin(1 + 𝑡)) 

with the exact solution 𝑡. Numerical results are presented in Table 2. 

 
TABLE 1: Absolute errors for example 1(Galerkin method). 

 
  iteration  𝑆0

4 𝑆0
8 𝑆1

4 𝑆2
4 

  10   7.757 E--4   7.014 E--4   5.512 E--5   4.231 E--6  

20   3.313 E--4   6.853 E--7   2.316 E--7   3.251 E--8  

30   3.312 E--4   0.854 E--8   1.015 E--9   0.168 E--10  

40   3.312 E--4   1.853 E--8   0.158 E--10   3.012 E--11  

 
TABLE 2: Absolute errors for example 1(Petrov-Galerkin method). 

 
  iteration  𝑋𝑛 = 𝑆0

4 𝑋𝑛 = 𝑆0
6 𝑋𝑛 = 𝑆0

8 𝑋𝑛 = 𝑆0
10 

 𝑌𝑛 = 𝑆1
2 𝑌𝑛 = 𝑆1

3 𝑌𝑛 = 𝑆1
4 𝑌𝑛 = 𝑆1

5 

  5   8.810 E--3   8.844 E--3   8.803 E--3   7.213 E--3 

10   4.339 E--4   8.890 E--4   2.755 E--4   5.621 E--3  

15   3.357 E--4   8.454 E--4   1.827E--4   5.121 E--4 

20   3.355 E--4   8.454 E--4   1.612 E--5   2.257 E--5 

 
TABLE 3: Absolute errors for example 2(Galerkin method). 

 
  iteration  𝑆0

4 𝑆0
8 𝑆1

4 𝑆2
4 

  10   6.521 E--4   6.254 E--4   3.612 E--4   2.158 E--5 

20   3.359 E--4   5.268 E--6   2.158 E--7   6.268 E--7 

30   3.759 E--5   4.268 E--8   3.124 E--9   4.728 E--10 

40   2.168 E--5   3.684 E--9   1.589 E--10   2.154 E--12 

 

CONCLUSION 

The Galerkin and the Petrov-Galerkin methods have been used to 

solve the nonlinear integral equation of the Urysohn type by using a class 

of Alpert multiwavelets with orthonormal Legendre polynomials. The 

numerical examples show that the presented methods are effective and 

trustable.   
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